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A B S T R A C T   

Field data suggest that hydraulic fractures under in situ conditions are three-dimensional and non-planar in shale 
gas reservoirs. In this study, a fully coupled deformation, fracture growth, and fluid flow model is developed to 
simulate this complex phenomenon with a focus on the reduction of the total computational effort. An extended 
finite element method with high-order tip enrichment functions is used to simulate the rock deformation while 
the finite element method for the laminar flow in fractures. The explicit fracture representation is adopted to 
describe the non-planar 3D fractures. Schemes for identifying the fluid elements, selecting the enriched nodes, 
and subdividing the enriched elements are presented. The Newton-Raphson scheme is used to solve the coupled 
equilibrium and fluid flow equations in an element-by-element fashion. Within each Newton-Raphson iteration 
step, only enriched degrees of freedom are involved in the solution process by using the reduction technique to 
further reduce the computational effort. A displacement extrapolation method considering high-order terms is 
proposed to extract stress intensity factors from the displacement field. Several examples are performed to 
demonstrate the applicability and effectiveness of the proposed approach. The effectiveness of MPI parallel 
implementation of the proposed method is also investigated.   

1. Introduction 

In the shale gas exploitation area (Economides and Martin, 2007), 
hydraulic fracturing has been widely applied to improve the produc-
tivity of hydrocarbons by pumping high-pressure fluid into the reser-
voirs to artificially create flow paths consisted of hydraulic fractures. 
There are many other applications of hydraulic fracturing, such as un-
derground disposal or storage of waste (Raziperchikolaee et al., 2013), 
extraction of geothermal energy (Kumari et al., 2018), preconditioning 
in cave mining (He et al., 2016), measurement of in-situ stress (Hayashi 
et al., 1997), etc. In order to gain a better understanding of these com-
plex phenomena, it’s of great necessity to construct reliable numerical 
models to investigate the mechanism of hydraulic fracturing. 

In recent decades, some theoretical hydraulic fracturing models 
(Adachi et al., 2007) available for simple geometric configurations have 
been derived, such as the well-known PKN model for long fractures of 
small height (Perkins and Kern, 1961; Nordgren, 1972), the KGD model 
(Klerk, 1969) for short fractures, and the penny-shaped model for radial 
fractures (Sneddon, 1946). In recent years, on account of improvements 
in computer technology, various numerical methods (Adachi et al., 

2007; Gupta and Duarte, 2014) were proposed and applied to study the 
hydraulic fracturing mechanism in which some key mechanical pro-
cesses such as the deformation of rock matrix, the growth of hydraulic 
fractures, and the fluid flow within fractures have to be carefully 
addressed. Among these methods, the most frequently used include the 
finite element method (FEM) (Bao et al., 2014), the distinct element 
method (Shimizu et al., 2011), and the displacement discontinuity 
method (DDM) (Tang et al., 2019), etc. The FEM was early applied 
(Papanastasiou, 1999) in hydraulic fracturing simulation and shows 
great flexibility when the number of fractures is small. However, when it 
comes to complex or 3D non-planar geometric configuration, the FEM 
shows less efficiency due to the remeshing of the propagated fractures 
and the induced data mapping between meshes with different mesh 
structures. Seeing the shortcomings of the conventional FEM, some 
effective improvement measures have been put forward, such as the 
extended finite element method (XFEM) (Belytschko and Black, 1999; 
Moës et al., 1999) in which enrichment functions and additional 
enriched nodes are introduced to describe the discontinuous displace-
ment field around fractures. 

The XFEM is proposed under the framework of the partition of unity 
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theory (Melenk and Babuška, 1996) and shows exceptional promise for 
applications to hydraulic fracturing simulation due to the significant 
advantages of its mesh-independent feature. Early studies on applica-
tions of the XFEM to hydraulic fracturing simulation have been carried 
out by Lecampion (2009), Dahi-Taleghani and Olson (2011), Gordeliy 
and Peirce (2013), et al. A recent review of the literature on the appli-
cations of the XFEM to fluid-driven fractures can be found in our pre-
vious work (Shi et al., 2016; Shi et al., 2017). Field data of hydraulic 
fracturing in shale gas formation suggests that hydraulic fractures in real 
conditions are complex, 3D, and non-planar (Adachi et al., 2007). 
Nevertheless, 3D XFEM-based models were seldom reported in the 
published studies. Gupta and Duarte (2018) established a tightly- 
coupled numerical model for 3D non-planar hydraulic fracturing simu-
lation in the framework of the generalized finite element method 
(GFEM). Haddad and Sepehrnoori (2016) developed an XFEM-based 
cohesive zone model (CZM) for 3D multiple-cluster hydraulic frac-
turing simulation using commercial software Abaqus. Paul et al. (2018) 
established an XFEM-based CZM model to simulate 3D non-planar fluid- 
driven fracture propagation in the porous rock matrix. Among the few 
XFEM-based models, the fracture tip enrichments are neglected due to 
the difficulties in its 3D implementation, resulting in reduced approxi-
mation quality and other significant drawbacks. Firstly, the fractures 
must propagate completely through at least one element (Haddad and 
Sepehrnoori, 2016), and the fracture front must coincide with the 
element edges rather than lie within elements (Haddad and Sepehrnoori, 
2016). Secondly, owing to the lack of tip enrichment, the mesh needs to 
be highly refined around the propagated fracture front (Haddad and 
Sepehrnoori, 2016; Paul et al., 2018), causing the growth of the 
computational complexity. 

In this study, we construct a fully coupled XFEM-based model for 
hydraulic fracturing simulation of 3D non-planar fractures. The model 
simultaneously accounts for the elastic deformation of the rock forma-
tion, the growth of fluid-driven fractures, and the laminar flow within 
fractures. Obviously, the total computational expenses increase 
dramatically for 3D problems compared to two-dimensional (2D) since 
the multiplication of element number as well as the degrees of freedoms 
(DOFs) number (from 2 to 3) of each node. Even with today’s powerful 
computational facilities, it is still a challenging task to solve such large- 
scale coupled systems. To make the XFEM-based model suitable and 
effective for 3D field-scale simulation, the focus of this study is on the 
reduction of the computational effort and improvement of the robust-
ness without losing numerical precision. For this purpose, we represent 
the fracture surface in an explicit way (Section 3.1), rather than the 
implicit methods. That is because implicit methods, such as the level set 
method (Duflot, 2007), can be computationally expensive owing to the 
solution of 3D hyperbolic equations (Bordas and Moran, 2006) required 
for level set updating, and may cause the concealment of the sharp 
features of 3D crack surfaces (Gupta and Duarte, 2014). Besides, high- 
order tip enrichment functions (Section 2.3) extracted from the Wil-
liams analytical solution (Williams, 1957) are used to improve the 
simulation accuracy of the displacement fields. A displacement extrap-
olation method considering high-order terms is proposed to extract 
stress intensity factors (SIFs) from the displacement field (Section 2.7). 
In the meantime, to overcome the difficulty in the implementation of 
fracture tip enrichment in the linear elastic fracture mechanics (LEFM) 
framework, we present several schemes to identify the fluid elements 
(Section 3.2), determine the enriched nodes (Section 3.3), partition the 
enriched elements for precise integration (Section 3.4). In order to 
further reduce the computational cost, the reduction technique (Section 
2.6) is proposed to avoid the traditional DOFs during the solution 
process. 

It should be pointed out that the permeability of the rock and fluid 
leak-off from the hydraulic fracture into the rock formation have not 
been considered in this study. Hence, the proposed model is inapplicable 
to simulate fluid-driven fractures in porous rock formations with high 
permeability or fractured formations with low permeability (Meng et al., 

1996; Guo and Cheng, 2013). On the other hand, the stepwise fracture 
growth and ensuing pressure oscillations have been widely observed in 
the oil and gas industry (Okland et al., 2002), laboratory experiments 
(Lhomme et al., 2002; Trimonova et al., 2017; Peruzzo et al., 2019), and 
numerical simulations (Feng and Gray, 2017; Cao et al., 2018; Shovkun 
and Espinoza, 2019; Milanese et al., 2016; Secchi and Schrefler, 2014). 
It’s believed that the fluid flow in the bulk media and the fluid exchange 
between the fracture and the surrounding (leak-off) are necessary for a 
numerical model to capture the phenomenon of stepwise fracture 
growth and fluid pressure oscillations. Pizzocolo et al. (2013) suggested 
a consolidation process around the crack tip as an explanation for the 
stepwise propagation phenomenon of a crack in a porous medium. 
Milanese et al. (2016) gave an explanation of the step-wise phenomenon 
based on Biot’s theory. Feng and Gray (2017) showed that the rock 
permeability has a predominant influence on the step-wise pressure 
oscillations phenomenon, and the intensity of the pressure oscillations 
decreases with decreasing rock permeability (see Fig. 12 in their work 
for details). However, the stepwise fracture growth and ensuing pressure 
oscillations have not been captured in this study due to the assumption 
of impermeable rock formation; thus, the obtained results are smooth 
and continuous rather than in a stepwise and oscillating manner in this 
paper. 

The following sections of this paper are organized as follows. Firstly, 
the theoretical framework of the XFEM-based model is briefly presented 
in Section 2. Section 3 is dedicated to discuss and solve the challenges in 
implementing the proposed 3D XFEM-based approach. Finally, several 
examples will be presented in Section 4 to demonstrate the applicability 
and effectiveness of the proposed approach. The effectiveness of MPI 
parallel implementation of the proposed method will be investigated in 
Section 4.7. 

2. Problem formulation 

Consider a fracture Γc within a domain Ω, as illustrated in Fig. 1. The 
pressure of the Newtonian and incompressible fluid inside the fracture is 
denoted by p. We impose stress t on boundary Γt and displacement u on 
boundary Γu. nΓc is the normal vector of Γc. The fluid is pumped into the 
fracture at a rate of Q. In addition, some assumptions are made as fol-
lows. The lag between the fluid front and the fracture front is not 
considered. Besides, it is supposed that the rock formation behaves as 
linear elastic and the fracture growth process is quasi-static. 

Fig. 1. Schematic of fluid-driven propagation within a domain Ω.  
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2.1. Deformation of the rock formation 

The equilibrium equation of the quasi-static problem within the 
domain Ω can be written as 

∇⋅σ = 0 (1)  

along with the following boundary conditions  

where σ stands for the Cauchy stress tensor. The deformation of the rock 
matrix follows a linear relationship 

σ = D : ε (3)  

where D and ε represent the elasticity matrix of moduli and strain tensor, 
respectively. 

2.2. Fluid flow 

In this paper, the flow velocity in the direction normal to the fracture 
is neglected because of the extremely low permeability of the shale 
formation. Therefore, the flow can be treated as a 2D laminar flow 
problem which can be described by the mass conservation law in 
conjunction with Poiseuille’s cubic law (Adachi et al., 2007). For each 
fluid element, as depicted in Fig. 2, we define a local coordinate system 
at the element center with two base vectors {e1, e2} that satisfy the 

condition e1 × e2 = nΓc . Then, for any point x =

(

x1, x2

)

defined in the 

local coordinate system on the fluid-driven fractures, the strong form of 
the flow equation can be expressed as (Batchelor, 1967) 

∂w
∂t

− ∇x

(
w3

12μ∇xp
)

= Q (4)  

where w is the fracture aperture, μ is the fluid viscosity, t is time, and ∇x 
is a 2D gradient operator defined in the fracture plane Γc: 

∇x =
∂

∂x1
e1 +

∂
∂x2

e2 (5)  

2.3. The XFEM enrichment scheme 

In the literature, researchers have proposed a variety of numerical 
methods for the simulation of fluid-driven fracture propagation process. 
The first family of methods is based on LEFM. The second family of 
methods based on the cohesive zone models is suitable for ductile for-
mations or high-permeability formations (Wang, 2016), but usually re-
quires very fine meshes to accurately capture the fracture process zone 
(Lecampion et al., 2018). Besides, although cohesive zone models have 
the ability to simulate mode I/II fracture growth, they are usually not 
able to simulate mixed-mode I/II/III fracture growth (Lecampion et al., 
2018) which is very important for 3D hydraulic fracturing simulation as 
will be shown in this paper. Therefore, under the assumption (i.e., 
impermeable and brittle formation) made in this paper, the XFEM model 
based on LEFM is used to describe the displacement field around the 
fracture front. 

For a fluid-filled fracture tip, Gordeliy and Peirce (2013) considered 
that the power-law exponent λ for the tip enrichment should satisfy 1/2 
< λ < 1. Besides, Klimenko and Taleghani (2018) suggested that λ might 
change from 1/2 to 2/3 as the hydraulic fracture changes from the 
toughness-dominated regime to the viscosity-dominated regime. As an 
alternative, besides the Heaviside enrichment function, tip enrichment 
functions with non-singular terms in addition to singular terms (r1/2) are 
considered to account for the features of the displacement field around 
the fluid-filled fracture tip in this paper. This enrichment strategy in 
combination with the proposed 3D implementation scheme (Section 3) 
gives the ability to deal with hydraulic fracturing simulation problems 
without resorting to extremely fine meshes, which will be demonstrated 
in Section 4. For any point x in the domain Ω, its displacement u can be 
written as 

u(x) =
∑

I∈Sall

Nu
I (x)uI +

∑

I∈Sfrac

Nu
I (x)H(x)aI +

∑

I∈Stip

Nu
I (x)

∑10

l=1
Fl(x)bl

I (6)  

where Sall, Sfrac, and Stip are node sets of common nodes, Heaviside 
enriched nodes, and tip enriched nodes, respectively. uI, aI, and bl

I(l = 1, 
10) are displacement vectors of DOFs of nodes belonging to Sall, Sfrac, and 
Stip, respectively. Nu

I denotes the standard finite element shape function. 
Besides, the Heaviside enrichment function H(x) takes the following 
form 

H(x) =
{

1, if (x − x∗)⋅nΓc ⩾0
− 1, otherwise

(7)  

in which x∗ is the closest point on the fracture to point x. Tip enrichment 
functions F(x) for different orders of r, i.e., 

̅̅
r

√
, r, and r3/2 can be written 

as, respectively (Williams, 1957; Lan et al., 2013; Song et al., 2015): 

Fig. 2. Local coordinate system whose origin is positioned at the center of each 
fluid element colored in blue. The black dots represent fluid nodes. The base 
vector e1 coincides with the vector from the center to the first node of a 
fluid element. 

⎧
⎨

⎩
u = u on Γuσ⋅n = t on Γtσ⋅nΓc = pnΓc on Γc

(2)   
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{Fl(r, θ) }l=1,…,4 =
{ ̅̅

r
√

sin
θ
2
,
̅̅
r

√
cos

θ
2
,
̅̅
r

√
sinθsin

θ
2
,
̅̅
r

√
sinθcos

θ
2

}
(8)  

{Fl(r, θ) }l=5,6 = {rcosθ, rsinθ} (9)  

{Fl(r, θ) }l=7,…,10 =
{

r3/2cos
θ
2
, r3/2sin

θ
2
, r3/2sinθsin

θ
2
, r3/2sinθcos

θ
2

}
(10)  

where r and θ are components of the local cylindrical coordinate system 
(r, θ, z) defined in the x-y plane of the local Cartesian coordinate system 
(x, y, z) originating from point x′ which is the midpoint of each fracture 
front segment, as depicted in Fig. 3. The coordinates of point x in the 
local Cartesian coordinate system can be obtained as 
⎧
⎨

⎩

x
y
z

⎫
⎬

⎭
= T(x − x′

) (11)  

where T is the transformation matrix from the global Cartesian coordi-
nate system (X, Y, Z) to (x, y, z). 

2.4. Weak form of governing equations 

By introducing the test function δu(x, t), we can derive the weak form 
of the equilibrium equation 
∫

Ω
δε : σdΩ+

∫

Γc

[[δu]]⋅pnΓc dΓ =

∫

Γt

δu⋅tdΓ (12)  

in which [[δu]] = δu
(
Γ+

c
)
− δu

(
Γ−

c
)

is the displacement jump across Γc. 
Assuming a zero flux along the fracture front (Kumar and Ghassemi, 
2016), we introduce the test function δp(x, t) into the fluid flow equation 
(Eq. (4)), then the weak form can be obtained after integrating by parts 
∫

Γc

(

δp
∂w
∂t

−
w3

12μ∇xδp⋅∇xp − δpQ
)

dΓ = 0 (13)  

2.5. Discretization of governing equations 

Substitute Eqs. (3) and (6) into Eq. (12), the discrete form of the 
equilibrium equation can be written as (Shi et al., 2017): 

KU − QP − Fext = 0 (14)  

in which U stands for the global displacement vector, P is the fluid 

pressure vector, Fext is the force vector, and Q is the coupling matrix 
which transforms P to nodal forces: 

Q =

∫

Γc

(Nw)
T nΓc NpdΓ (15) 

In Eq. (15), Nw denotes the shape function matrix which transfers the 
global displacement vector U to fracture aperture vector w. In Eq. (14), 
the global stiffness matrix K can be assembled according to the following 
expression 

K =

⎡

⎣

∫

Ω

(
Bstd)T DBstddΩ

∫

Ω

(
Bstd)T DBenrdΩ

∫

Ω
(Benr)

T DBstddΩ
∫

Ω
(Benr)

T DBenrdΩ

⎤

⎦

=

[
Kss Kse
Kes Kee

]
(16) 

The linear hexahedral element with eight corner nodes is applied to 
mesh the model and construct the global stiffness matrix K. For elements 
without enriched nodes, 2 × 2 × 2 Gauss points are utilized to perform 
the integration. For elements that contain enriched nodes but no fracture 
surface, 6 × 6 × 6 Gauss points are adopted. For elements that contain 
fracture surface, acceptable integration accuracy can be reached if 
enough number of Gauss points are adopted (Sukumar et al., 2000). 
Nonetheless, it might be quite possible that no Gauss point exists on one 
side of the fracture within the brick element, resulting in singularity of 
the stiffness matrix and loss of integration robustness. Therefore, with 
the purpose of improving robustness, accuracy, as well as convergence 
rate, the enriched elements which are completely or partially divided by 
the fracture should be divided into tetrahedrons (Loehnert et al., 2011). 
Details on the construction of tetrahedrons will be presented in Section 
3.4. 

Triangle elements with three nodes are used to discretize the fluid 
flow equation (Eq. (13)), thus the fluid pressure at point x can be 
interpolated from nodal values pI according to 

p(x) =
∑

I∈Sfluid

Np
I (x)pI (17)  

where Np
I is the conventional finite element shape function of fluid el-

ements, and Sfluid represents the set of fluid nodes. 
Substitute Eq. (17) into Eq. (13), the discrete form of the fluid flow 

equation can be described by (Shi et al., 2017) 

QT U̇+HP+ S = 0 (18)  

where matrix H and vector S are the flow matrix and the source term, 
respectively 

H =

∫

Γc

w3

12μ
(
∇T

x Np)(∇xNp)dΓ (19)  

S =

∫

Γc

(∇xNp)
T QdΓ (20) 

Time discretization of the governing equation (Eq. (18)) is performed 
using the implicit backward Euler scheme and details can be found in 
our recent paper (Shi et al., 2017). Within each time step, the coupled 
non-linear system equations are iteratively solved using the Newton- 
Raphson scheme with a backtracking algorithm (Shi et al., 2017). 

2.6. Solution of the coupled equations 

In order to solve the coupled equations (Eqs. (14) and (18)) using the 
Newton-Raphson scheme, the residual vector Ri can be written as 

Ri =

[
0 0

− QT 0

](
ΔU
ΔP

)i

+

[
K − Q
0 − ΔtHi

](
U
P

)i

−

(
Fext

ΔtSi

)i

(21)  

Fig. 3. Local Cartesian coordinate system (x, y, z) and local cylindrical coor-
dinate system (r, θ, z) defined at the midpoint of the fracture front segment. The 
y-axis coincides with nΓc . The z-axis is defined along the direction of the fracture 
front segment. 
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where i denotes Newton-Raphson iteration step number. The corre-
sponding Jacobin matrix takes the following form 

Ji =

[
K − Q

− QT − ΔtHi

]

(22) 

Using the reduction technique proposed in our previous work (Shi 
et al., 2017), the reduced residual vector Ri

R and reduced Jacobin matrix 
Ji

R can be respectively written as 

Ri
R =

[
0 0

− QT
e 0

](
ΔUe
ΔP

)i

+

[
Kee − KesK− 1

ss Kse − Qe

0 − ΔtHi

](
Ue
P

)i 

−

(
− KesK− 1

ss Fext
s

ΔtSi

)i

(23)  

Ji
R =

[
Kee − KesK− 1

ss Kse − Qe

− QT
e − ΔtHi

]

(24)  

where Qe is obtained by removing terms related to the conventional 
DOFs from the coupling matrix Q, Ue is the displacement vector of the 
enriched DOFs, Fext

s is obtained by removing terms related to the 
enriched DOFs from the force vector Fext. 

Therefore, the following equation can be obtained 

Ji
RΔU

⌢i
= Ri

R (25)  

where ΔU
⌢

=

[
ΔUe
ΔP

]

. The resulting Eq. (25) is assembled and solved in 

an element-by-element fashion (Smith et al., 2014) without direct as-

sembly of element matrices. Then, U
⌢i+1 

can be updated according to 

U
⌢i+1

= U
⌢i

− ΔU
⌢i 

until the following criterion is satisfied: 
⃦
⃦
⃦ΔU

⌢i
− ΔU

⌢i− 1⃦⃦
⃦

⃦
⃦
⃦ΔU

⌢i− 1⃦⃦
⃦

⩽εtol (26)  

where εtol is taken as 10− 6 in this study and || || denotes L2 norm oper-
ator. It should be noted that the reduction technique can also (Shi et al., 
2017) be used to solve the linear system (Eq. (14)) without fluid pressure 
(Section 4.1) or with constant fluid pressure (Section 4.2). 

2.7. Fracture growth model 

During the hydraulic fracturing treatment, it is preferred that the 
hydraulic fracture initiates and propagates directly from the wellbore in 
the direction of the preferred in-situ stress orientation. In practice, 
however, the hydraulic fracture usually propagates in a mixed-mode I/ 
II/III, which sometimes leads to curving and possibly segmentation of 
the fracture front. Segmented fractures caused by mixed-mode frac-
turing has been widely found both in nature (Rubin, 1995; Abelson and 
Agnon, 1997) and laboratory investigations (Wu et al., 2009; Bunger 
et al., 2017; Ketterij and Pater, 1999). Researchers (Wu et al., 2009) 
show that in quasi-brittle materials, even a small mode III component of 
stress intensity factors may cause fracture segmentation for a fluid- 
driven fracture. In this paper, the Schöllmann’s criterion (Schöllmann 
et al., 2002) which is based on the assumption that the propagation 
occurs in the direction of maximum principal stress σ1 ahead of the crack 
front is adopted as the crack propagation criterion. In this criterion, all 
fracture modes are considered making it well-suited for computational 
implementations aimed at fully 3-D crack growth prediction. Nonethe-
less, since the geometrical configuration of the segmented fracture is 
very complex (Wu et al., 2009; Bunger et al., 2017; Ketterij and Pater, 
1999), it remains a challenging task to explicitly simulate the segmen-
tation process from the perspective of numerical implementation, 

especially for a large-scale hydraulic fracturing simulation. As a 
compromise, the adopted Schöllmann’s criterion assumes continuity of 
the fracture front, consequently causing the failure of the proposed 
model to predict the segmentation phenomenon of the fracture front. 

Details of the Schöllmann’s criterion can be found in Schöllmann 
et al. (2002). In accordance with this criterion, the fracture propagation 
direction is determined by two fracture deflection angles, i.e., the 
kinking angle θ0 and the twisting angle ψ0 as depicted in Fig. 4. The 
kinking angle θ0 is determined by the rules: 

∂σ1

∂θ
= 0
⃒
⃒
⃒
⃒

θ=θ0

,
∂2σ1

∂θ2 < 0
⃒
⃒
⃒
⃒

θ=θ0

(27)  

where the maximum principal stress σ1 is calculated on a virtually 
created cylindrical surface (Schöllmann et al., 2002) using the following 
equation 

σ1 =
σθ

2
+

1
2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

σ2
θ + 4τ2

θz

√

(28) 

In Eq. (28), the stress components σθ and τθz can be expressed in 
terms of SIFs: 

σθ =
KI

4
̅̅̅̅̅̅̅
2πr

√

[

3cos
(θ

2

)
+ cos

(
3θ
2

)]

−
KII

4
̅̅̅̅̅̅̅
2πr

√

[

3sin
(θ

2

)
+ 3sin

(
3θ
2

)]

(29)  

τθz =
KIII
̅̅̅̅̅̅̅
2πr

√ cos
(θ

2

)
(30)  

where r stands for the distance from the fracture front to the virtual 
cylindrical surface. In the present study, a golden section search algo-
rithm (Press et al., 1992) is applied to find the kinking angle θ0 which 
maximizes σ1. Once determining the kinking angle θ0, the twisting angle 
ψ0 can be obtained by 

ψ0 =
1
2

arctan
[

2τθz(θ0)

σθ(θ0)

]

(31) 

For the fracture front vertex i, the magnitude of front advancement 
can be obtained by 

Δai =

⎧
⎪⎪⎨

⎪⎪⎩

0, if KIeq < KIc

Δamax

(
Ki

Ieq − KIc

)

Kmax
Ieq − KIc

, if KIeq⩾KIc

(32)  

where Δamax is the maximum fracture front advancement and taken as 

the average characteristic length lc of enriched elements (lc = V1/3
enrich, 

where Venrich represents the average volume of all enriched ele-
ments);KIeq is the equivalent mode-I SIF and can be computed using the 
following expression (Schöllmann et al., 2002) 

Fig. 4. Depiction of the kinking angle θ0 and the twisting angle ψ0 for 3D 
fracture propagation. 
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KIeq =
1
2
cos
(θ0

2

)
⎧
⎨

⎩
KIcos2

(θ0

2

)
−

3
2
KIIsin(θ0)

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
[

KIcos2
(θ0

2

)
−

3
2

KIIsin(θ0)

]2

+ 4K2
III

√ ⎫
⎬

⎭
(33) 

Besides, KIc is the mode-I fracture toughness. It should be noted that 
if the length of the newly created fracture front segment is larger than lc, 
a new vertex should be added at the midpoint of segment. 

Because of the assumption of the quasi-static fracture propagation, 
the maximum value of equivalent mode-I SIF, Kmax

Ieq , at fracture front 
vertexes should equal the mode-I fracture toughness at each time step. 
For a given fracture propagation step, dynamic time step (Bao et al., 
2014; Tang et al., 2019; Gupta and Duarte, 2018) Δt is used to fulfill the 
following condition 
(
1.0 − εt

tol

)
KIc⩽Kmax

Ieq ⩽
(
1.0 + εt

tol

)
KIc (34)  

where εt
tol is the tolerance and taken as 0.01 in this study. 

Due to the non-uniform pressure distribution near the fracture front, 
the energy-based stress intensity factor extraction methods including the 
J-integral method as well as the interaction integral method (Gupta 
et al., 2017) are not chosen to calculate the SIFs. Instead, the displace-
ment extrapolation method in which boundary conditions on fracture 
surfaces do not need to be specially considered is selected. Similar to the 
tip enrichment functions, high-order terms are used in the proposed 
displacement extrapolation method. For a mode-I crack, the vertical 
displacement on both sides of the fracture surface can be written as 
(Kanninen and Popelar, 1985) 

v(r, π) = KI
κ + 1
2G

̅̅̅̅̅
r

2π

√

+Ar3/2 +Br5/2 +O (r7/2) (35)  

v(r, − π) = − KI
κ + 1
2G

̅̅̅̅̅
r

2π

√

− Ar3/2 − Br5/2 +O (r7/2) (36)  

where parameters A and B depend on material parameters, load condi-
tions, and geometry configuration. G represents the shear modulus, and 
κ represents the Kolosov constant. Consequently, the vertical displace-
ment jump can be written as 

[[v(r)]] = KI
κ + 1

G

̅̅̅̅̅
r

2π

√

+ 2Ar3/2 + 2Br5/2 +O (r7/2) (37) 

Let’s define K*
I (r) :=

̅̅̅̅
2π
r

√
G

κ+1 [[v(r)]], then we have 

K*
I (r) = KI + Ãr + B̃r2 +O (r3) (38)  

where parameters Ã and B̃ are constants. Given three different radius, 
ra > rb > rc, the mode-I SIF can be obtained according to 

KI =
K*

I (ra)c1 + K*
I (rb)c2 + K*

I (rc)c3

c1 + c2 + c3
(39)  

with 

c1 = rbr2
c − r2

brc

c2 = rcr2
a − r2

c ra

c3 = rar2
b − r2

arb

(40) 

Compared to the conventional displacement extrapolation method 
(Gupta et al., 2017; Guinea et al., 2000) where only two points behind 
the fracture front are selected to calculate SIFs, three points (points a, b, 
and c) are adopted in this proposed method, leading to improved ac-
curacy (see Section 4.1.2 for details). In this paper, these three points are 
uniformly spaced at a distance of Δr, that is, Δr = ra − rb = rb − rc. The 
same procedure can be followed to extract KII and KIII from the 
displacement field. 

3. Computational methodology 

3.1. Description of the fracture surfaces 

Due to the expensive computational cost and the drawback of 
describing special fracture surface features such as kinking, twisting and 
branching (Gupta and Duarte, 2014), the implicit description method, 
such as the widely used level set method, is not employed in this paper. 
Instead, as shown in Fig. 5(a), the fracture surface Γc is explicitly rep-
resented (Baydoun and Fries, 2012) by a set of spatial triangle patches 
Ti, i.e., Γc = ∪

Ntri
i=1 Ti, where Ntri is the total number of triangle patches. 

Each triangle patch Ti is composed of three triangle points T1
i to T3

i 

indexed in an anti-clockwise order. Given a set of triangle points in R3 

which are related by a connectivity matrix, the explicit description 
method is able to select elements that need to be enriched in the FE mesh 
and determine fluid elements. After the propagation, the fracture sur-
faces are updated by adding new triangle patches around the fracture 
front, as shown in Fig. 5(b). 

3.2. Identification of the fluid elements 

First of all, as shown in Fig. 6(a), for an element entirely cut by a 
fracture (in other words, not intersected by the fracture front), the nodes 
of fluid elements can be directly determined by calculating the in-
tersections of element edges and the fracture surface according to the 
segment/triangle intersection algorithm (Jiménez et al., 2010). In order 

Fig. 5. Illustration of the fracture surface: (a) explicit description of the fracture composed of flat triangles and straight edges; (b) the updated fracture after 
propagation. 
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to form the fluid elements, the fluid nodes (as shown in Fig. 7(a)) must 
be sorted in an anti-clockwise order (Fig. 7(b)) by minimizing the 
following expression 

L =
∑n− 1

i=1
li+1
i (41)  

where n is the number of fluid nodes with respect to the hexahedral 
element (brick element), and li+1

i represents the distance between fluid 
node i and i + 1. Finally, as shown in Fig. 7(c), the fluid elements can be 
formed by connecting adjacent sorted fluid nodes and sharing a common 

fluid node 1. 
Furthermore, as shown in Fig. 6(b), if the fracture surface contains 

one or more triangle points used to describe the fracture surface, in 
addition to intersections of element edges and the fracture surface, these 
triangle points should also be selected as fluid nodes. Afterwards, fluid 
elements can be simply determined according to the rules demonstrated 
in Fig. 7(d)–(f) in which fluid elements are constructed by firstly con-
necting triangle points, and then connecting triangle points and sorted 
fluid nodes. Generally, the number of fluid elements nfluid can be quan-
titatively determined according to the following expression 

Fig. 6. Determination of fluid nodes: (a) no triangle point on the fracture surface; (b) one triangle point on the fracture surface.  

Fig. 7. Construction of fluid elements: (a) intersections of element edges and the fracture surface; (b) sorted fluid nodes in an anti-clockwise order; (c) generation 
rules for fluid elements when there is no triangle point on the crack surface; and generation rules for fluid elements when there are one (d), two (e), and three (f) 
triangle points on the crack surface. Black dots represent fluid nodes, yellow triangles represent the explicit fracture surface, and blue triangles represent fluid el-
ements, similarly hereinafter. 
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nfluid = nI + 2(nT − 1) (42)  

where nI denotes the number of intersections of element edges and the 
fracture surface, nT denotes the number of triangle points used to 
describe the fracture surface. Take Fig. 8 for example, in Fig. 8(a) nI 
equals 6, nT equals 0, then 4 fluid elements are constructed; in Fig. 8(b) 
nI equals 6, nT equals 2, then 8 fluid elements are constructed; in Fig. 8 
(c) nI equals 6, nT equals 3, then 10 fluid elements are constructed. 

It should be noted that if the area Ae of a fluid element satisfies 
Ae⩽εe

tolAe, then this fluid element will be degraded to a single fluid node 
in this study. Ae stands for the average area of all fluid elements and εe

tol 
is taken as 10− 4. After obtaining the fluid elements, the fluid pressure 
can be applied to the enriched DOFs by performing numerical integra-
tion over the entire area of the discrete fluid domain. 

For elements intersected by the fracture front, triangle points used to 
describe the fracture front (i.e., the fracture front vertex), as well as 
intersections of the fracture front edges and brick element faces should 
all be selected as fluid nodes. As shown in Fig. 9, fluid node 4 is located 
at the fracture front vertex, fluid nodes 3 and 5 are located at the in-
tersections of the fracture front edges and brick element face 2 and face 
1, respectively, and four fluid elements are constructed in this example. 
For more complex geometrical cases involving triangle points of the 
fracture surface, fluid elements can also be easily determined according 
to the rules depicted in Fig. 9 in conjunction with the strategy presented 
in the previous paragraph. The number of fluid elements nfluid is deter-
mined by 

nfluid = nI + nV + 2(nT − 1) (43)  

where nV denotes the number of fracture front vertex. 

3.3. Selection of enriched elements 

There are two kinds of enriched elements: the Heaviside enriched 
elements and the tip enriched elements. In general, there exist two ways 
to choose tip enriched elements: topological enrichment and geomet-
rical enrichment. For the former, only elements intersected by the 
fracture front are enriched. For the latter, however, elements whose all 
nodes are in a fixed area (that is, the distance rf from the node to fracture 
front segments satisfies rf < re, where re is the enrichment radius) are all 
enriched. To gain a better convergence rate (Agathos et al., 2016), 
geometrical enrichment is adopted in this paper. For the sake of 
improving the efficiency of the algorithm, brick elements which contain 
triangle points, fracture front vertexes, or triangle edges are selected and 
saved once the newly formed fracture front is available. Hence, the 
inefficient brute-force search can be avoided. For a certain brick 
element, the algorithm to determine whether to enrich it or not is 
summarized as Algorithm 1.  

Algorithm 1: An algorithm to determine whether to enrich a brick element or not. 

Step 
1 

If the brick element contains fracture front vertex, then the brick element 
should be marked as tip enriched element and go to Step 5. If not, go to Step 
2. 

Step 
2 

Check if the fracture front intersects the faces of the brick element 
according to the segment/triangle intersection algorithm (Jiménez et al., 
2010). If yes, the element should be marked as tip enriched element and go 
to Step 5. If not, go to Step 3. 

Step 
3 

Let lji be the signed distance (Algorithm 2) from node i to fracture j. The 
element should be selected as Heaviside enriched element and go to Step 5 

if max
(

lji
)

⋅min
(

lji
)
< 0 (for i varying from 1 to 8, j varying from 1 to the 

number of fractures) is satisfied. If not, go to Step 4.  

(continued on next page) 

Fig. 8. Illustration of the constructed fluid elements inside the hexahedral elements: (a) 6 intersections of element edges and the fracture surface, no triangle points, 
and 4 fluid elements constructed; (b) 6 intersections of element edges and the fracture surface, two triangle points, and 8 fluid elements constructed; (c) 6 in-
tersections of element edges and the fracture surface, three triangle points, and 10 fluid elements constructed. 

Fig. 9. Construction of fluid elements for the case where the fracture surface contains a fracture front vertex, wherein (a) is the side view and (b) is the top view. 
Faces colored in red represent the faces of the brick element. Triangles colored in blue represent fluid elements. 
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(continued ) 

Step 
4 

Loop over nodes of the brick element, calculate the minimum distance ri
f 

from node i (i = 1,…,8) to all fracture front segments. If min
(

ri
f

)
< re, then 

the element should be chosen as tip enriched element. Go to Step 5.  
Step 

5 
End.  

Calculation of signed distance dsign from a point P (node or Gauss point) 
to a fracture surface composed of triangle patches is a very crucial part 
for the selection of Heaviside enrichment elements and the element 
integration. For a given element, the calculation procedure is summa-
rized as Algorithm 2.  

Algorithm 2: Calculation of the signed distance from a point P (node or Gauss point) 
to a fracture surface composed of triangle patches. 

Step 
1 

If the element contains a triangle point PT (as depicted in Fig. 10 (a)), then 
calculate the signed distance from P to all triangles (T1 to Tn) which share 
point PT according to Algorithm 3, and then go to Step 4. If no, go to Step 2.  

Step 
2 

If the element contains any triangle edge ET (as depicted in Fig. 10(b) which 
contains two triangle edges ET

1 and ET
2), then calculate the signed distance 

dSi
sign from P to all subregions (S1 to Sn) according to Algorithm 4, and then 

go to Step 4. If no, go to Step 3.  
Step 

3 
Calculate the signed distance from P to the fracture surface, as illustrated in 
Fig. 10(c). Go to Step 4. 

Step 
4 

End.   

Algorithm 3: Calculation of the signed distance for cases in which the fracture surface 
contains triangle point and edges. 

Step 
1 

For each triangle, calculate the signed distance dTi
sign from point P to triangle 

Ti (Appendix A). and check whether the foot of the perpendicular P′ lies 
inside Ti (Appendix A). Go to Step 2.  

Step 
2 

Define a triangle set T* composed of triangles whose foot of the 
perpendicular lies inside the triangle patch. If T* is non-empty, then dsign is 
the minimum value of dTi

sign where Ti⊂T*, and go to Step 4. If T* is empty, go 
to Step 3.  

Step 
3 

Calculate the average normal of all triangles nT =
∑n

i=1ni
T/n, then dsign can 

be obtained by calculating the signed distance from P to the spatial plane 
with normal nT and passing through PT. Go to Step 4.  

Step 
4 

End.   

Algorithm 4: Calculation of the signed distance for cases in which the fracture surface 
contains triangle edges but no triangle point. 

Step 
1 

Divide each subregion (a spatial polygon) into a number of triangles, and 
calculate the signed distances to triangles. Go to Step 2. 

Step 
2 

Define a subregion set S* composed of subregions whose foot of the 
perpendicular lies inside the triangle patch. If S* is non-empty, then dsign is 

(continued on next column)  

(continued ) 

the minimum value of dSi
sign where Si⊂S*, and go to Step 4. if S* is empty, go 

to Step 3.  
Step 

3 
Calculate the average normal of subregions (nS =

∑n
⌢

i=1ni
S/n

⌢
, where n

⌢ 

indicates the number of subregions sharing the edge ET
i ) which share the 

triangle edge ET
i . Calculate the signed distance dET

i
sign from P to the spatial 

plane with normal nS and passing through ET
i . dsign = min

(
dET

i
sign

)
. Go to Step 

4.  
Step 

4 
End.  

3.4. Partitioning the enriched elements with arbitrary discontinuities 

Once the enriched elements are obtained, they are subdivided into 
sub-cells (tetrahedral elements) aligned with the discontinuity for nu-
merical integration which is of great importance to achieve better ac-
curacy and optimal convergence. Similar to the identification of the fluid 
elements, the procedure to partition enriched elements with arbitrary 
discontinuities varies depending on the situation whether the element 

Fig. 10. Calculation of the sighed distance from point P to the fracture surface which contains (a) a triangle point and edges; (b) triangle edges; (c) neither triangle 
point nor edge. 

Fig. 11. Subdivision of an enriched element containing no fracture front. (a) 
the upper sub-element; (b) the lower sub-element; (c) tetrahedrons of the upper 
sub-element; (d) tetrahedrons of the lower sub-element. 
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includes a piece of the crack front or not. 
For brick elements that contain no fracture front, after obtaining the 

fluid elements, the sub-elements and tetrahedrons for numerical inte-
gration can be obtained according to the following procedure (take the 
case in Fig. 8(b) for example):  

⋅ Divide the brick element into two sub-elements by the surface 
composed of fluid elements, as shown in Fig. 11(a) and (b) where 
both sub-elements have 14 flat faces.  

⋅ If the flat faces contain more than 3 vertexes, then divide them into 
flat triangles by connecting the vertexes and sharing a common 
vertex, as shown in Fig. 11(c) and (d) where both sub-elements have 
20 triangle faces. 

⋅ For each sub-element, create a new point by computing the arith-
metic mean of the coordinates constituting all triangle faces of each 
sub-element.  

⋅ Construct tetrahedrons by connecting the newly created point and 
each triangle face. For the case shown in Fig. 11, the number of 
tetrahedrons for both sub-elements is 20. 

For brick elements that contain fracture fronts, the tetrahedrons can 
be obtained according to the following procedure in which another 
complementary cutting procedure has to be performed (take the case in 
Fig. 9 for example):  

⋅ Extend the original surface (composed of blue triangles shown in 
Fig. 12) to form a cutting surface that is able to completely split the 
brick element. After the extension, the added triangles are colored in 
orange as shown in Fig. 12(a). 

⋅ Divide the brick element into two sub-elements by the cutting sur-
face, as shown in Fig. 12(b) and (c) where each sub-element has 11 
faces. 

⋅ Divide the flat faces which contain more than 3 vertexes into tri-
angles by connecting the vertexes and sharing a common vertex as 
illustrated by the red lines in Fig. 12(a) and (c). 

⋅ For each sub-element, create a new point by computing the arith-
metic mean of the coordinates constituting all triangle faces of each 
sub-element.  

⋅ Construct tetrahedrons by connecting the newly created point and 
each triangle face. 

Finally, the numerical integration of the brick element containing 
discontinuity (Fig. 8 (b)) can be performed through 40 tetrahedral ele-
ments with 4 Gauss integration points (Loehnert et al., 2011) for each 
tetrahedral element. Besides, for the brick element presented in Fig. 9, 
the resulting number of tetrahedral elements is 32. It should be noted 
that nodes on each face of the tetrahedron must be sorted in an anti- 
clockwise direction in order to avoid the negative volume error. 

4. Numerical examples 

The theoretical model and simulation methods proposed in this 
paper have been programmed into an in-house program called PhiPsi 
(http://phipsi.top). Several examples are presented to show the effi-
ciency, robustness, and applicability of the presented method. The 
computer used to perform the numerical examples has an AMD 3950X 
CPU (16 physical cores) and 128 GB memory space. It should be noted 
that since the process of fracture nucleation has not been considered, the 
initial cracks in all examples are given as known at specified locations, 
for example, the center of the geometric model. Besides, in this paper, 
geometric models are all discretized with non-uniform meshes. More 
specifically, fine meshes are employed within a predetermined region 
that is in the vicinity of the initial fracture. Thus, remeshing is required 
only when the hydraulic fractures propagate beyond the refined region, 
which in fact does not occur in all examples because the refined region is 
large enough to cover the propagated fracture. 

4.1. Inclined penny-shaped fracture subjected to a tensile load 

The first example is aimed to investigate the convergence rate of the 
proposed method and validate the accuracy of SIFs calculated using the 
displacement extrapolation method with high-order terms. As illustrated 
in Fig. 13, an inclined penny-shaped fracture is located at the center of a 

Fig. 12. Subdivision of an enriched element containing fracture front. (a) the enriched element with extended faces (colored in orange); (b) tetrahedrons of the upper 
sub-element; (c) tetrahedrons of the lower sub-element. 

Fig. 13. (a) Schematic of a cubic domain which contains an inclined penny- 
shaped fracture; (b) The front-view (in the X-Z plane) and (c) the top view 
(in the X-Y plane) of the fracture. The size of the fracture is magnified in (b) 
and (c). 
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cuboid of size 2 × 2 × 2 m. The angle α between the fracture surface and 
the horizontal surface is π/6. The initial radius a of the fracture equals 
0.1 m. re for the geometrical enrichment is taken as 0.04 m. The tensile 
stress σzz applied on the top surface of the domain is 100 MPa. Young’s 
modulus E and Poisson’s ratio ν are 20 GPa and 0.3, respectively. As 
shown in Fig. 14, the domain with a size of 0.4 × 0.4 × 0.3 m (in x, y, and 
z directions, respectively) located at the model center is discretized with 
four different mesh densities, i.e., 0.02 × 0.02 × 0.02 m (mesh case 1), 
0.015 × 0.015 × 0.015 m (mesh case 2), 0.01 × 0.01 × 0.01 m (mesh 
case 3), and 0.005 × 0.005 × 0.005 m (mesh case 4). As a consequence, 
the minimum element edge lengths hmin are 0.02 m, 0.015 m, 0.01 m, 
and 0.005 m for mesh cases 1 to 4, respectively. The number of elements 
along the x direction of the refined domain is 20, 27, 40, and 80, 
respectively. The number of total elements for cases 1 to 4 are 19,600, 
36,750, 92,160, and 542,080, respectively. With the increase of the 
mesh density, a dramatic increase of elements number can be clearly 
seen. Fortunately, the enriched DOFs constitute only a portion (14.7%, 

13.5%, 11.7%, and 8.8% for mesh case 1 to 4, respectively) of the total 
DOFs, as shown in Fig. 15. More importantly, the ratio of enriched DOFs 
decreases with the increase of the total DOFs. Hence, in virtue of the 
reduction technique, the DOFs involved in the solution process can be 
reduced. 

4.1.1. L2 norm and energy norm of error 
In this example, because there is no fluid pressure, the discrete fluid 

flow equation (Eq. (18)) is of no concern, and the nodal displacement 
vector can be determined by solving Eq. (14) in the absence of vector P. 
Convergence rates of four different methods including XFEM, XFEM- 
High order terms (the proposed method), and XFEM-High order terms- 
WR (for the description of acronyms, see Table 1) are tested in this 
example. The L2 norm of the error and the energy norm of the error are 
defined as, respectively 

errL2 =

(∫

Ω

(
uRef − u

)T ( uRef − u
)
dΩ
)1/2

(∫

ΩuT
Ref uRef dΩ

)1/2 (44)  

errE =

(∫

Ω

(
εRef − ε

)T D
(
εRef − ε

)
dΩ
)1/2

(∫

ΩεT
Ref DεRef dΩ

)1/2 (45)  

where uRef and εRef denote reference displacement fields and strain 
tensors obtained from FEM, u and ε denote corresponding results ob-
tained using the proposed method. In Fig. 16, the influence of the mesh 
density on errL2 and errE is investigated. It can be seen that the tip 
enrichment functions with high-order terms show better convergence 
rates and improved accuracy for both the L2 norm and the energy norm 
of error, compared to the conventional XFEM with 4 tip enrichment 
terms and topological enrichment. Moreover, it should be noted that the 
reduction technique has no influence on the simulation results, just as 
demonstrated in previous work (Shi et al., 2017). 

4.1.2. Stress intensity factors 
In this section, the proposed method (XFEM-High order terms) is 

adopted to evaluate the extraction method of SIFs proposed in Section 
2.7. rc and Δr are taken as 0.01 m and 0.1 hmin, respectively. The 
relative error of SIF of mode-i is defined as 

erri
K =

(
∑nK

j=1

(
Kj

i − K̂
j
i

)2
)1/2

(
∑nK

j=1

(
K̂

j
i

)2
)1/2 (46)  

where nK is the number of calculation points of SIFs along the fracture 

front, Kj
i and K̂

j
i denote, respectively, numerical and analytical SIF value 

of mode-i at calculation point j. The analytical solutions of mode I, II, 
and III SIFs are available (Duflot, 2006) and can be written as 

K̂ I = 2σcos2α
̅̅̅
a
π

√

(47)  

Fig. 14. Illustration of the refined domain.  

Fig. 15. Number of total DOFs and enriched DOFs for mesh case 1 to 4.  

Table 1 
Acronyms of tested methods.  

Acronym Method description 

XFEM XFEM with 4 tip enrichment terms and topological 
enrichment 

XFEM- High order 
terms 

XFEM with 10 tip enrichment terms 

XFEM- High order 
terms-WR 

XFEM with 10 tip enrichment terms but Without the 
Reduction technique  
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K̂ II = −
4

2 − ν σsinαcosα
̅̅̅
a
π

√

sinγ (48)  

K̂ III = −
4(1 − ν)

2 − ν σsinαcosα
̅̅̅
a
π

√

cosγ (49)  

where γ is the fracture front angular position where the SIFs are calcu-
lated, just as depicted in Fig. 13(c). 

The relative errors of the calculated SIFs with comparison to the 
analytical solutions are given in Fig. 17. With the refinement of the 
mesh, the errors gradually decrease. It can be noticed that the proposed 
displacement extrapolation method with high-order terms (denoted by 
“Proposed method” in the figure) can predict the SIFs with higher ac-
curacy compared to the conventional displacement extrapolation 
method (denoted by “Conventional method” in the figure). 

4.2. Growth of a penny-shaped fracture under constant pressure 

The second example verifies the computational methodology pre-
sented in Section 3 and the crack propagation model presented in Sec-
tion 2.7. The effect of element size will also be investigated in this 
example. A cubic domain has a size of 50 × 50 × 50 m, and the initial 

penny-shaped crack, which is horizontally located at the center of the 
domain and filled with fluid of constant pressure, has a radius of a = 3 m, 
as shown in Fig. 18. All of the domain boundaries are fixed. Young’s 
modulus E, Poisson’s ratio ν, and fracture toughness KIc are given values 
of 20 GPa, 0.3, and 2 MPa⋅m1/2, respectively. Similar to Fig. 14, a refined 
domain with a size of 10 × 10 × 5 m is located at the model center. The 
sizes of elements within the refined domain are 0.5 × 0.5 × 0.5 m (mesh 
case 1) and 0.25 × 0.25 × 0.25 m (mesh case 2), and the model has been 
meshed into 10,200 and 43,800 hexahedral elements in total, respec-
tively. re is taken as 1.5 m. For mesh case 1, the discrete initial 
geometrical fracture surface and the local coordinate systems at the 
discrete points on the fracture front are shown in Fig. 19. In addition, the 
number of fluid elements of the initial fracture is 298, as shown in 
Fig. 20. 

The necessary pressure pc required to propagate the fracture and the 
volume Vc of the injected fluid can be obtained according to the 
following analytical solutions (Abé et al., 1976): 

pc =

̅̅̅̅̅̅̅̅̅

K2
Icπ

4a

√

(50)  

Vc =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

64a5K2
Icπ(1 − ν2)

2

9E2

√

(51) 

In this example, since constant pressure is applied, the discrete fluid 
flow equation (Eq. (18)) is of no concern, and the nodal displacement 
vector can be obtained by directly solving Eq. (14). The comparison of 
the analytical solution (Eq. (50)) and the numerical solution of the fluid 
pressure (pc) required to propagate the fracture of different radius is 
shown in Fig. 21, from which a good agreement can be observed. For 
mesh case 1, the error equals 4.4% and 1.9% when the radius equals 3 m 
and 6 m, respectively. In addition, for mesh case 2, the error can be 
further reduced to 1.7% and 0.8%, respectively. The volume of the 
penny-shaped fracture at different radius is shown in Fig. 22, where 
again good agreement between theory (Eq. (51)) and simulation results 
can be seen. From Figs. 21 and 22, it can be concluded that the presented 
XFEM enrichment scheme for the fracture within hexahedral solid ele-
ments is able to capture the discontinuous features of the fluid-driven 
fracture, the triangular fluid elements shown in Fig. 20 are sufficient 
to describe fluid pressure, and the displacement extrapolation method of 
SIFs calculation is accurate enough for the 3D fracture under the action 

Fig. 16. L2 norm of the error and the energy norm of the error versus number of 
elements along the long side direction of the refined mesh zone. 

Fig. 17. Relative errors of the SIFs with various mesh densities.  

Fig. 18. (a) Schematic of a cubic domain which contains an initial penny- 
shaped fracture; (b) The front-view (in the X-Z plane) and (c) the top view 
(in the X-Y plane) of the fracture. The size of the fracture is magnified in (b) 
and (c). 
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of fluid pressure. 

4.3. Growth of a penny-shaped fracture under fracturing fluid 

In this example, a benchmark problem which has available asymp-
totic analytical solutions (Appendix B) will be studied to verify the fluid- 
solid coupling model presented in Section 2.5. Both toughness- 
dominated and viscosity-dominated fracturing (Savitski and Detour-
nay, 2002) are studied by setting the fluid viscosity to 0.0001 Pa⋅s and 
0.1 Pa⋅s, respectively. A penny-shaped fracture is horizontally placed at 
the center of the 100 × 100 × 100 m cubic domain. The initial radius a of 
the fracture is equal to 1.5 m. The mesh is locally refined with 0.25 ×
0.25 × 0.25 m elements within the refined region with a size of 23 × 23 
× 2 m around the fracture. The total number of brick elements is 97,780. 
Fluid is pumped into the fracture center at a rate of 0.01 m3/s. Material 
properties of rock formation are given values of E = 17 GPa, ν = 0.25, 
and KIc = 2 MPa⋅m1/2. The pumping time is 20 s. 

The time evolution of fracture radius, the final fracture opening as 

Fig. 19. Discrete initial geometrical fracture surface. The local Cartesian coordinate systems at the vertexes of fracture front are also shown.  

Fig. 20. Fluid elements of the initial fracture for mesh case 1. The black dots 
represent fluid nodes. 

Fig. 21. Fluid pressure required to propagate the penny-shaped fracture at 
different radius. 

Fig. 22. Volume of the penny-shaped fracture at different radius.  
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well as the net pressure along the radius are presented in Figs. 23 and 24 
for the toughness-dominated simulation and the viscosity-dominated 
simulation, respectively. Good agreements can be seen from both fig-
ures, which indicates that the proposed fluid-solid coupling model is 
capable of 3D hydraulic simulation for both low and high viscosity 
fracturing fluid. It is worthwhile noting that the singularities of net 
pressure near the fracture center and the fracture front, which are 
consistent with the analytical solutions, are caused by the point source 
assumption and the zero-lag assumption, respectively. It can also be 
found that the radius of the final fracture of the viscosity-dominated case 
is much smaller compared to the toughness-dominated case. This is 
because the majority of the energy has been dissipated during the 
viscous flow process rather than the fracturing process. Additionally, it 
should be noted that the obtained results are smooth and continuous 
rather than in a stepwise and oscillating manner observed in other 
simulation studies (Feng and Gray, 2017; Cao et al., 2018; Shovkun and 
Espinoza, 2019; Milanese et al., 2016; Secchi and Schrefler, 2014). This 
is because the rock formation is assumed to be impermeable media in 
this paper. Meanwhile, the fluid exchange between the fracture and the 
surrounding (leek-off) is ignored. According to the possible mechanisms 
that induce the stepwise advancements, basic requirements including 
permeable rock formation and fluid leak-off have not been satisfied 
(Feng and Gray, 2017; Milanese et al., 2016; Pizzocolo et al., 2013). On 
the other hand, the maximum crack increment length is predetermined 
in this study (see Eq. (32)), and the advancement algorithm does not 

Fig. 23. Results of the toughness-dominated fracturing of a penny-shaped 
fracture: (a) time evolution of fracture radius; (b) final fracture opening; (c) 
final net pressure. 

Fig. 24. Results of the viscosity-dominated fracturing of a penny-shaped frac-
ture: (a) time evolution of fracture radius; (b) final fracture opening; (c) final 
net pressure. 

Fig. 25. Schematic of a cubic domain that contains two initial parallel penny- 
shaped fractures. 
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allow for displacement jumps within a time step. However, the inde-
pendence between the advancement algorithm and the time-stepping 
algorithm is of paramount importance if stepwise advancement has to 
be obtained (Cao et al., 2018). This is believed to be another reason for 
the failure of the proposed model to capture the stepwise advancement 
phenomenon. 

4.4. Growth of two close penny-shaped fractures 

In this example, the accuracy and efficiency of the proposed nu-
merical model will be demonstrated through an example in which two 
initial parallel penny-shaped fractures of 1 m radius are vertically 
located at the center of a 100 × 100 × 100 m cubic domain, as shown in 
Fig. 25. Besides, the influence of the reduction technique on consumed 
CPU time is also investigated. The distance between fractures d is taken 
as 5 m, 10 m, and 15 m, respectively. The in-situ stress in all three di-
rections (x, y, and z) is 10 MPa. The fluid of 0.1 Pa⋅s viscosity is 
simultaneously injected into both fractures at a rate of 0.01 m3/s. The 
pressure loss along the horizontal well has not been considered. Point 
source boundary condition is assumed because of the negligible size of 
the wellbore compared to the size of fractures. We choose Young’s 
modulus E = 20 GPa, Poisson’s ratio ν = 0.2, and fracture toughness KIc 
= 2 MPa⋅m1/2. The mesh is locally refined with 0.5 × 0.5 × 0.5 m 
element within the region with a size of 20 × 20 × 20 m around frac-
tures. The total number of brick elements is 123,600. A comparison of 
the propagation paths between our solution and an existing solution 
done by Salimzadeh et al. (2017) using the finite element method will be 
given. 

For two adjacent fractures, it will grow away from the other one due 
to the compressive stress field caused by the opening of the nearby 
fracture filled with high-pressure fluid. This phenomenon is called the 
stress shadow effect. As shown in Fig. 26, there is a good agreement of 
fracture propagation paths between the published results (Salimzadeh 
et al., 2017) and the present simulation results, indicating that the 
presented model is capable of predicting the effect of stress shadow 
between fractures. The cross-section view (y = 0) of the stress distri-
bution in x direction is given in Fig. 27. It can be observed that the stress 
around the fracture front is lower than the in-situ stress, but the stress in 
the region between fractures is higher than the in-situ stress (i.e., the 
stress build-up zone or the stress shadow zone). It can also be observed 

from Fig. 27 that the intensity of the stress shadow decreases with 
increasing spacing between fractures, which leads to less curving of the 
fracture propagation paths. The geometrical surface of the final induced 
fractures of 5 m spacing is shown in Fig. 28. The fracture surfaces are 
composed of 1988 triangle patches and are completely smooth without 
any tortuous feature. This conclusion is consistent with the symmetry of 
this problem and clearly reveals the reliability and accuracy of the 
proposed approach. Moreover, the fracture opening is shown in Fig. 28 
where the maximum value of 0.93 mm arises at the fracture center. 

The CPU time for the case where d equals 5 m is presented in Fig. 29. 
For the first two propagation steps, the CPU time with the reduction 
technique is longer than the one without the reduction technique 
because some extra operations related to DOFs decomposition need to be 
carried out at the beginning of the simulation. However, the positive 
effect of the reduction technique on computational efficiency becomes 
more and more obvious as fractures propagate. As a result, the total CPU 
time is decreased by 53.5%. 

4.5. Growth of a planar fracture: validation against experimental data 

In this example, we validate the proposed numerical model and al-
gorithms with laboratory experimental results (Wu et al., 2008) of a 
planar hydraulic fracture subjected to heterogeneous confining stresses. 
The experiment was conducted using two unbonded impermeable pol-
ymethyl methacrylate (PMMA) blocks of thickness 175 mm and the 
hydraulic fracture grows along the unbonded interface. As depicted in 
Fig. 30, the size of the model in x, y, and z directions are 340 mm, 250 
mm, and 350 mm, respectively. In-situ stresses in z direction in Zone 1, 
Zone 2, and Zone 3 are 11.2 MPa, 7.0 MPa, and 5.0 MPa, respectively. 
The coordinates of the injection point are (0, 0, 0). The radius of the 
initial circular fracture originated from the injection point is 20 mm. The 
viscosity of the injected fluid is 30 Pa⋅s. The fracture toughness on the 
interface fracture plane is zero and the pure mode-I hydraulic fracture 
propagation process is in the viscosity-dominated regime. Material pa-
rameters E and ν of the PMMA are 3.3 GPa and 0.4, respectively. In the 
experiment, the fluid is injected in three stages and the injection rate 
changes with time as follows 

Q(t) =

⎧
⎨

⎩

0.9 × 10− 3mL/s, 0 < t ⩽31 s
6.5 × 10− 3mL/s, 31 s < t ⩽151 s
2.3 × 10− 3mL/s, 151 s < t ⩽701 s

(52) 

Because the fracture propagates only in mode-I, a thin domain of size 
340 × 250 × 12.5 mm (in x, y, and z directions, respectively) around the 
interface fracture plane is locally refined with 2.5 × 2.5 × 2.5 mm el-
ements. The total number of brick elements is 176,800. re for the 
geometrical enrichment is taken as 7.5 mm. 

Comparisons of numerical and experimental fracture footprints at 
different injection times are presented in Fig. 31. It can be seen that the 
numerical results agree very well with the experimental results. 
Furthermore, Fig. 32 gives the evolution of fracture width at (30 mm, 0) 
which has been experimentally measured by Wu et al. (2008). Again, 
good agreement between the numerical results and the experimental 
data can be observed. It is worth noting that a sharp decrease of fracture 
width can be seen from the numerical results at the end of the second 
injection stage. However, considering the compliance of the injection 
system, the real fluid injection rates in the experiment may be different 
from the expected one as given in Eq. (52). Therefore, the measured 
fracture width changes smoothly rather than in an abrupt manner 
compared to the numerical results. 

4.6. Mixed-mode growth of an inclined penny-shaped fracture under 
fracturing fluid 

The goal of this example is to show the effects of mode III loading on 
fracture propagation path and the role of KIII in the fracture propagation 
criterion. The geometric model used here is similar to the one described 

Fig. 26. Effect of the fracture spacing on the fracture propagation paths in a 2D 
cross-section view (y = 0). The black, blue, and red lines represent the paths 
obtained in the reference (Salimzadeh et al., 2017) with spacing 5 m, 10 m, and 
15 m, respectively. The black circles, blue triangles, and red squares represent 
the paths obtained in the present study with spacing 5 m, 10 m, and 15 m, 
respectively. 
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in Section 4.1. As illustrated in Fig. 13, an inclined penny-shaped frac-
ture is located at the center of a cuboid of size 150 × 150 × 150 m. The 
angle α between the fracture surface and the horizontal surface is π/4. 
The initial radius a of the fracture equals 2.5 m. The fluid of 0.01 Pa⋅s 
viscosity is injected at the fracture center at a rate of 0.01 m3/s. re for the 

Fig. 27. Cross-section view (y = 0) of the stress distribution in × direction and the geometry of the propagated fractures with initial spacing 5 m (a), 10 m (b), and 
15 m (c). Positive values indicate compression stress. 

Fig. 28. Geometrical fracture surface and fracturing opening of the final induced fractures of 5 m initial spacing.  

Fig. 29. Consumed CPU time for the case where d equals 5 m. A single CPU 
process is used in this example. 

Fig. 30. Schematic of the interface fracture plane of PMMA blocks subjected to 
heterogeneous confining stresses. 
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geometrical enrichment is taken as 1.05 m. The in-situ stresses σxx, σyy 
and σzz are 1.0 MPa, 1.0 MPa, and 2.5 MPa, respectively. Material pa-
rameters of the rock formation E, ν, and KIc are 20 GPa, 0.2, and 2 
MPa⋅m1/2, respectively. The domain with a size of 15 × 15 × 20 m (in x, 
y, and z directions, respectively) located at the model center is dis-
cretized with a mesh density of 0.35 × 0.35 × 0.35 m. The number of 
total brick elements is 173,056. The simulation involves 10 propagation 
steps. Mode III effects on fracture path are investigated by considering 
KIII = 0. 

Geometrical fracture surfaces after the final propagation step are 
shown in Fig. 33. In this paper, all fracture modes are taken into account 
in the adopted Schöllmann’s criterion (Schöllmann et al., 2002). How-
ever, as discussed in Section 2.7, since it conserves the continuity of the 
fracture front, this criterion is incapable of reproducing the fracture 
front segmentation process (Bunger et al., 2017; Ketterij and Pater, 
1999). Hence, the resulting fracture surface is smooth and continuous 
without segmentation on the fracture front. Details of the fracture 
reorientation paths and the reorientation angles are presented in the 
cross-section view shown in Fig. 34. The reorientation angle ϕ1 (61.3◦) 
with KIII effects is 16.8% larger than ϕ2 (52.5◦) without KIII effects. The 
Schöllmann’s criterion considering KIII effects gives a more tortuous 
path and is more likely to provide a planar mode I crack growth as the 

fracture propagates (Pereira et al., 2010) compared to the case without 
KIII effects. Fig. 35 depicts the evolution of borehole pressure over time 
with and without KIII effects. The final borehole pressure of the case 
without KIII effects is 1.33 MPa and is 5.7% lower than 1.41 MPa of the 
case with KIII effects. Besides, Fig. 36 shows the time evolution of frac-
ture width at the injection point with and without KIII effects. The final 
fracture width of the case without considering KIII effects is 1.21 mm and 
is 8.3% lower than 1.32 mm of the case with KIII effects. According to the 
results presented in this section, it can be concluded that mode III effects 
cannot be ignored in a hydraulic fracturing simulation. In fact, the ef-
fects of KIII are more significant if the fracture front segmentation is 
reproduced in a numerical model (Huang et al., 2013). This will be 
further investigated in the future study. 

Fig. 31. Numerical and experimental fracture footprints at different injection 
times. Experimental results (Wu et al., 2008) are denoted by solid lines and 
numerical results are denoted by dotted line. 

Fig. 32. Evolution of fracture width at a measurement point located at (30 mm, 
0). The injection schedule is also shown. 

Fig. 33. Geometrical fracture surfaces after the final propagation step: (a) with 
KIII effects; (b) without KIII effects. 

Fig. 34. Cross-section view (y = 75 m) of the fracture reorientation paths. The 
reorientation angles ϕ1 and ϕ2 are also shown. 
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4.7. Growth of 8 penny-shaped fractures 

This section is aimed to investigate the performance of the parallel 
implementation (Smith et al., 2014) of the proposed method using the 
Message Passing Interface (MPI). Thanks to the reduction technique and 
the element-by-element algorithm (Smith et al., 2014) where the as-
sembly of global system matrices is avoided, the proposed method yields 
a high flexibility with respect to parallel implementation. In this study, 
an in-house mesh-partitioning tool called PhiPsi_MPT is adopted to 
perform the domain decomposition. After specifying DOFs numbers, 
sub-domains are allocated to processes. Model preparation, data reading 
and writing are implemented by using a single main process. In the 
meantime, equations are solved on processes and necessary communi-
cations between processes are carried out using MPI. 

In this example, 8 initial parallel penny-shaped fractures of 1 m 
radius are vertically located at the center of a 100 × 100 × 160 m cubic 
domain, as shown in Fig. 37. The distance between any two adjacent 
fractures is 20 m. The injection rate of fluid of 0.1 Pa⋅s viscosity is 0.05 
m3/s for all fractures. All other parameters including in-situ stress, 

Fig. 35. Evolution of borehole pressure versus time with and without 
KIII effects. 

Fig. 36. Evolution of fracture width at the injection point versus time with and 
without KIII effects. 

Fig. 37. Schematic of a cubic domain that contains 8 initial parallel penny- 
shaped fractures. 

Fig. 38. Illustration of domain compositions shown in the X-Z plane for parallel 
computation using different numbers of MPI processes. The size of geometrical 
models in z direction is scaled in order to show all cases in one figure. 

Fig. 39. Cross-section view (y = 0) of the stress distribution in × direction and 
the geometry of the propagated fractures. Positive values indicate compres-
sion stress. 
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Young’s modulus, Poisson’s ratio, and fracture toughness are the same 
as in Section 4.4. The mesh is locally refined with 0.25 × 0.25 × 0.25 m 
element within the region with a size of 10 × 10 × 5 m around each 
fracture. The total number of brick elements is 742,680. In this problem, 
instead of simulation results, we focus mainly on the CPU time of the 
simulation performed using different numbers of MPI processes. Four 
cases with different domain decomposition strategies are studied as 
illustrated in Fig. 38, numbers of fractures in each sub-domain for cases 
(a), (b), (c), and (d) are 8, 4, 2, and 1, respectively. 

The cross-section view of the stress distribution in × direction is 
presented in Fig. 39. The stress shadow effect has not been observed due 
to the large spacing between fractures. The consumed CPU time versus 
injection time for cases (a) to (d) is shown in Fig. 40. Significant de-
creases of the total consumed CPU time can be observed. The speed-up 
(the ratio of the consumed CPU time required by the single process 
simulation to the consumed CPU time required by the multi-process 
simulation) for cases (b), (c), and (d) over case (a) is by a factor of 
1.91, 3.69, and 7.03, respectively. These results illustrate very high 
effectiveness of parallel implementation of the proposed method. In fact, 
the proposed model can be readily implemented on massively parallel 
architectures. 

5. Conclusions 

In recent years, the XFEM has shown great flexibility and effective-
ness in fracture propagation applications because of its mesh- 
independent feature. There is a considerable amount of XFEM-based 
literature on 2D hydraulic fracturing simulation in shale gas reser-
voirs, whereas, to the best of our knowledge, very little is available when 
it comes to 3D hydraulic fracturing problems. This paper shows how the 
XFEM can be efficiently used to simulate 3D non-planar fluid-driven 
fracturing applications in energy exploitation area. In order to do that, 
we present a fully-coupled approach in which an extended finite element 
method with high-order tip enrichment functions is used to simulate the 
rock deformation. Some challenging issues on the computational 
methodology, including the identification of fluid elements, the selec-
tion of enriched nodes and elements, and the subdivision of enriched 
elements are handled efficiently in virtue of the explicit description of 
the geometrical fractures. The discretized non-linear system of equa-
tions of the fully-coupled model is solved using the Newton-Raphson 
method in an element-by-element fashion in conjunction with the 
reduction technique through which only enriched DOFs are involved in 
the solution process. Besides, a displacement extrapolation method 
considering high-order terms is proposed to extract stress intensity 

factors from the displacement field. 
Seven numerical examples are solved to illustrate the validity and 

performance of the proposed method. The first example shows that tip 
enrichment functions with high-order terms show better convergence 
rates and improved accuracy for both the L2 norm and the energy norm 
of error. In addition, the proposed displacement extrapolation method 
with high-order terms can predict SIFs with higher accuracy. The frac-
ture propagation model is validated in the second example by comparing 
with the analytical solution. Numerical solutions of both toughness- 
dominated and viscosity-dominated fracturing in the third example 
are in good agreement with analytical solutions, indicating the appli-
cability and reliability of the fluid–solid coupling model. The propaga-
tion of two parallel penny-shaped fractures in the fourth example, where 
the stress shadow effect is well studied, illustrates that the reduction 
technique can significantly decrease the total CPU time by up to 53.5% 
without sacrificing the simulation accuracy. The validation of the pro-
posed method against laboratory experimental data is presented in the 
fifth example, and good agreements are achieved. The effects of mode III 
loading on the fracture propagation path and the importance of KIII in a 
fracture propagation criterion are demonstrated in the sixth example. 
The performance of MPI parallel implementation of the proposed 
method is investigated in the last example with up to 742,680 hexahe-
dral elements. The speed-up for the case with 8 MPI processes over the 
case with one process is by a factor of 7.03, indicating very high parallel 
performance of the proposed method. 

The proposed method can be used as an easy-to-implement, flexible, 
and efficient numerical tool for modeling 3D non-planar fluid-driven 
fracture propagation in shale gas reservoirs or other application sce-
narios. In order to further improve the applicability of the proposed 
method, the permeability of rock formation and the fracture front seg-
mentation will be considered in the following work. Other on-going 
work includes interactions between fluid-driven fractures and natural 
fractures, load balance algorithm for the parallel implementation with 
up to 1,000 processes, and large-scale engineering application tests. The 
present work is a first step that paves the road towards such simulations. 
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Appendix A. Signed distance from a point to a triangle patch 

Let T1
i , T2

i and T3
i be the triangle points of triangle Ti, and calculate the normal of Ti 

ni
T = T1

i T2
i × T1

i T3
i (A.1) 

Then, as illustrated in Fig. A1, the angle α between ni
T and PT1

i can be obtained 

α = arccos

(
PT1

i ⋅ni
T⃒

⃒PT1
i

⃒
⃒|ni

T |

)

(A.2) 

The length of the vector from P to the foot of the perpendicular P′ can be found using 

|PP′

| =
⃒
⃒PT1

i

⃒
⃒cosα (A.3) 

Finally, the signed distance from P to triangle Ti can be expressed as 

dTi
sign = sign

⎛

⎜
⎜
⎝det

⎡

⎢
⎢
⎣

T2
i − T1

i

T3
i − T1

i

P − T1
i

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠|PP

′

| (A.4) 

In order to check whether P′ lies inside Ti, we introduce vectors v0 = T3
i − T1

i , v1 = T2
i − T1

i and v2 = P ’ − T1
i . Two dimensionless parameters u and v 

are defined as 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u =
(v1⋅v1)(v2⋅v0) − (v1⋅v0)(v2⋅v1)

(v0⋅v0)(v1⋅v1) − (v0⋅v1)(v1⋅v0)

v =
(v0⋅v0)(v2⋅v1) − (v0⋅v1)(v2⋅v0)

(v0⋅v0)(v1⋅v1) − (v0⋅v1)(v1⋅v0)

(A.5) 

Then, P′ lies inside Ti if the following conditions can be satisfied 
⎧
⎨

⎩

u⩾0
v⩾0

u + v⩽1
(A.6)  

Appendix B. Asymptotic solutions of the penny-shaped fluid-driven fracture 

For a zero-toughness, penny-shaped fluid-driven fracture without leak-off, the asymptotic analytical solutions of the fracture radius R, the facture 
opening w and the net pressure p can be expressed as (Savitski and Detournay, 2002): 

R(t) = 0.6955
(

Q3
0E′

μ′

)1
9

t4
9 (B.1)  

w(ρ, t) = 0.6955[0.0705(13ρ + 21.0823)(1 − ρ)
2
3 + 0.236(

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ρ2

√
− ρarccosρ)](Q

3
0μ’2

E’2 )

1
9

t
1
9 (B.2)  

p(ρ, t) = [0.8593 −
0.2387
(1 − ρ)

1
3
− 0.09269lnρ](μ’E’2)

1
3t− 1

3 (B.3)  

where E′

= E/
(
1 − ν2), μ′

= 12μ, ρ = r/R. 
For a zero-viscosity fracture, the solutions can be written as follows (Savitski and Detournay, 2002): 

R(t) = L [0.8546 − 0.7349M μ′

] (B.4)  

w(ρ, t) = E ⊖L

{
0.6537

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ρ2
√

+

M

(
0.8264 − 1.2397

[
ρarccosρ − 1.2I*(ρ) − 0.1069

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ρ2
√ ])} (B.5)  

p(ρ, t) = E ⊖E′{0.3004 + M
[
0.638 − 0.5697lnρ + 0.3418ln

(
1 − ρ2) ] } (B.6)  

where K′

= 4
̅̅̅̅̅̅̅̅
2/π

√
KIc,M = μ’(

Q3
0E’13

K’18 t2 )
1
5, E = ( K’6

E’6Q0t)
1
5, L = (

Q2
0E’2 t2

K’2 )

1
5, and 
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I*(ρ) =
∫ 1

ρ

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − ξ2

ξ2 − ρ2

√

arcsinξdξ (B.7)  
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